If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+70x-225=0
a = 1; b = 70; c = -225;
Δ = b2-4ac
Δ = 702-4·1·(-225)
Δ = 5800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5800}=\sqrt{100*58}=\sqrt{100}*\sqrt{58}=10\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-10\sqrt{58}}{2*1}=\frac{-70-10\sqrt{58}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+10\sqrt{58}}{2*1}=\frac{-70+10\sqrt{58}}{2} $
| 100(x-25)=1/2x(x-15)1/2x | | y/7+6=-13 | | 43+62+57x/3=55 | | -10x+2+8x=14 | | 3y+5=2y+4 | | 5y(-5)=10 | | 3x+9+4x=2x-7+3x | | 3x-x=1.5-2x | | 12x+23=45 | | h+9.1=-5.3 | | X/6-x/12+4=x+4 | | H-10=3h+10 | | 4x-3x+10-1=4x+10 | | h+2(h-3)=9 | | -1/3=j+1/5 | | (X+8)^2=16-x^2+9x | | 6u2–49u=0 | | (3n-5)+2=3n-10 | | 105+(3p-18)=180 | | 1/3y+6=-19 | | 0=-4x^2 | | 40+15+.25x=90+.35x | | 20x+4=64x | | 61y=15(4y+3) | | 5x(x-4)-10=5(x-8) | | -3(-7u+1)-4u=29(u-4)-1 | | n/9+17=106 | | 12=2w+3/ | | s+2/3s+10=64 | | 1/9y+3=-16 | | (7+8i)^2=0 | | 2y+3/4=3y+7/4 |